Abstract
In this work, sand and bubble column experiments were conducted to explore the deposition mechanisms of graphene oxide (GO) particles in porous media with various combinations of moisture content and ionic strength. Sand column experimental results indicated that retention and transport of GO in porous media were strongly dependent on solution ionic strength. Particularly, GO showed high mobility under low ionic strength conditions in both saturated and unsaturated porous media. Increasing ionic strength dramatically increased the retention of GO particles in porous media, mainly through secondary-minimum deposition as indicated in the XDLVO interaction energy profiles. Recovery rates of GO in unsaturated sand columns were lower than that in saturated columns under the same ionic strength conditions, suggesting moisture content also played an important role in the retention of GO in porous media. Findings from the bubble column experiments showed that the GO did not attach to the air–water interface, which is consistent with the XDLVO predictions. Additional retention mechanisms, such as film straining, thus could be responsible to the reduced mobility of GO in unsaturated porous media. The experimental data of GO transport through saturated and unsaturated porous media could be accurately simulated by an advection–dispersion-reaction model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.