Adsorption of BSA on the surface of chromium and 304 stainless steel, has been characterized by Contact Angle Measurements, X-ray Photoelectron Spectroscopy (XPS) and Infrared Reflection Absorption Spectroscopy (IRRAS). Bacterial adhesion has been tested and compared on these two materials before and after pre-conditioning the surface with BSA. Chromium and stainless steel surfaces, when covered by a natural oxide layer, exhibit different energetic characteristics as shown by their γ s - and γ s LW respective values. These data vary upon immersion in BSA solutions, tending towards common values for duration of immersions. After immersion in BSA solutions, the evolution of the N 1s XPS signal, specific for the BSA, suggests that the surface is nearly saturated in a few minutes. Longer times of immersion only lead to a re-ordering of the adsorbed layer. Immersion tests in dilute BSA solutions (0.01 g/l) enabled us to make clear a higher reactivity of chromium towards the protein compared to stainless steel. These differences are cancelled at higher BSA concentrations (1 g/l). IRRAS spectra of BSA adsorbed on the two substrates demonstrated the appearance of amide I and amide II bands with small shifts and intensity variations supporting orientation changes of the protein when the concentration or immersion time varies. A model for the building up of the BSA layer is proposed, which accounts for these data. Chromium and stainless steel surfaces, also have different behaviours towards adhesion of Pseudomonas fragi K1, whereas surfaces that are pre-conditioned by BSA behave in a similar way. The overall number of adherent bacteria is decreased on stainless steel, whereas it is hardly affected on chromium. On both surfaces, the fraction of viable cells is increased.