AbstractThe sessile bryozoanMembranipora membranaceafrequently colonizes the phaeophyteSaccharina japonica.Identifying early colonization markers using proteomics could assist in the early detection of epiphytic contamination. Different sections of thallus tissue proximal to the bryozoan (i.e. the 1-cm zone beyond the boundary of the colony) and tissue from the colony-front (i.e. the narrow zone under the newly formed front of the colony after removing the bryozoans) were separated. From the proteomic profiles ofS. japonica, we detected 151 protein spots (99 up-, 50 down-, and 2 similarly regulated) from proximal tissues and 151 spots (69 up-, 75 down-, and 7 same-regulated) from colony-front tissues. Hundred and ten spots were detected from distal healthy thallus tissue, used as a control. The protein SSP15 was specifically up-regulated in the proximal tissues by ca. 1395-fold, while it exhibited little expression at the colony-front and in distal healthy tissues. ATPases were markedly up-regulated in both the proximal and colony-front tissues by 3198- and 2475-fold, respectively. Rpl1P and SRSF proteins were specifically up-regulated only in colony-front tissues by 5724- and 273-fold, respectively. Therefore, these proteins may be used as specific biomarkers for the early detection of bryozoan colonization on each tissue type of the seaweed.
Read full abstract