In the present study, we report the evolution of stabilizing Pickering emulsions using brush-modified Janus particles (JPs), utilizing the dissipative particle dynamics (DPD) simulation technique. Our results are subsequently corroborated with experimental findings. Each JP has one-half of the hydrophobic surface, with the other half embedded with hydrophilic polymer brushes grown via atom transfer radical polymerization (ATRP). Our generic simulation model analyzes the chemical kinetics of polymer brush growth on one-half of the initiator-embedded microparticle (MP) surface, resulting in the formation of JP. This involves evaluating monomer conversion and reaction rates. Our results exhibit a substantial influence of the number of JPs, grafted brush density, and brush length on oil-in-water emulsion stability. We studied the evolution kinetics and stability of emulsion formation by analyzing the growth of average domain size and corresponding scaling functions up to a late time limit. This study aims to clarify the connection between the size, quantity, and functionality of JPs and the stability of Pickering emulsions.
Read full abstract