Abstract

The interfacial region between nanoparticles and polymer matrix plays a critical role in influencing the mechanical behavior of polymer nanocomposites. In this work, a set of model systems based on poly(methyl methacrylate) (PMMA) matrix containing poly(alkyl glycidyl ether) brushes grafted on 50 nm metal-organic-framework (MOF) nanoparticles were synthesized and investigated. By systematically increasing the polymer brush length and graft density on the MOF nanoparticles, the fracture behavior of PMMA/MOF nanocomposite changes from forming only a few large crazes to generating massive crazing and to undergoing shear banding, which results in significant improvement in fracture toughness. The implication of the present finding for the interfacial design of the nanoparticles for the development of high-performance, multifunctional polymer nanocomposites is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.