In common bean (Phaseolus vulgaris L.), the most abundant seed proteins are the storage protein phaseolin and the family of closely related APA proteins (arcelin, phytohemagglutinin and α-amylase inhibitor). High variation in APA protein composition has been described and the presence of arcelin (Arc) has been associated with bean resistance against two bruchid beetles, the bean weevil (Acanthoscelides obtectus Say) and the Mexican bean weevil (Zabrotes subfasciatus Bohemian). So far, seven Arc variants have been identified, all in wild accessions, however, only those containing Arc-4 were reported to be resistant to both species. Although many efforts have been made, a successful breeding of this genetic trait into cultivated genotypes has not yet been achieved. Here, we describe a newly collected wild accession (named QUES) and demonstrate its resistance to both A. obtectus and Z. subfasciatus. Immunological and proteomic analyses of QUES seed protein composition indicated the presence of new Arc and arcelin-like (ARL) polypeptides of about 30 and 27kDa, respectively. Sequencing of cDNAs coding for QUES APA proteins confirmed that this accession contains new APA variants, here referred to as Arc-8 and ARL-8. Moreover, bioinformatic analysis showed the two proteins are closely related to APA components present in the G12949 wild bean accession, which contains the Arc-4 variant. The presence of these new APA components, combined with the observations that they are poorly digested and remain very abundant in A. obtectus feces, so-called frass, suggest that the QUES APA locus is involved in the bruchid resistance. Moreover, molecular analysis indicated a lower complexity of the locus compared to that of G12949, suggesting that QUES should be considered a valuable source of resistance for further breeding purposes.
Read full abstract