High pressure (20 MPa), cyclic, supercritical carbon dioxide (scCO2) treatments can reduce the moisture content of green Pinus radiata sapwood from 150–200% to 35–40%. Such treatments can be used as a dewatering pre-treatment before the kiln-drying of timber. Kiln-drying can utilise various temperature and humidity schedules, targeting around 10% moisture content, with a final stress-relieving steam-conditioning step. After scCO2 treatment and kiln-drying of samples, kiln brown stain was evaluated using the CIE L*a*b* colour space while drying stress was assessed by stress-cup measurements. The most significant results of scCO2 pre-treatment of Pinus radiata sapwood followed by kiln-drying plus steam-conditioning were as follows: Drying from green (36 h from a moisture content (MC) of 164%) using a conventional temperature schedule (90 °C/60 °C) took 2–5 times longer than kiln-drying scCO2 pre-treated boards (37.5% MC) to a target of 10% MC. Colour measurements proved that kiln brown stain does not occur. The use of a steam-conditioning step in reducing internal drying stresses was important irrespective of whether or not there was a scCO2 pre-treatment step. Over all drying schedule combinations, internal drying stress of both green and scCO2 pre-treated timber was similar after kiln-drying plus steam-conditioning. However, using only 90 °C/60 °C schedule data, with steam-conditioning, drying stresses were lower using kiln-drying without the scCO2 pre-treatment. This was surprising since the scCO2 step reduced the moisture content to around 37.5% without significant moisture gradients and so a secondary kiln-drying to 10% moisture content could have been expected to yield lower internal stress levels by preventing large moisture gradients to develop during drying. This result confirms the efficacy of the steam-conditioning step following standard kiln-drying. The colour data demonstrating the prevention of kiln brown stain using kiln-drying schedules offers a path to increasing timber quality for interior applications.