We present an experimental approach to record the spatiotemporal electric field distribution of coherent broadband THz pulses propagating through planar metamaterial arrays. The electric field can be measured with sub-wavelength precision within a volume that is several wavelengths in size, thus, having the potential to map the near-field to far-field transition of the resonant structures constituting the metamaterial. To demonstrate the potential we present measurements of THz pulses propagating through a planar array of double split-ring resonators and their inverse analogues.