We show that narrow trenches in a high-contrast silicon-photonics slab can act as lossless power dividers for semi-guided waves. Reflectance and transmittance can be easily configured by selecting the trench width. At sufficiently high angles of incidence, the devices are lossless, apart from material attenuation and scattering due to surface roughness. We numerically simulate a series of devices within the full 0-to-1-range of splitting ratios, for semi-guided plane wave incidence as well as for excitation by focused Gaussian wave bundles. Straightforward cascading of the trenches leads to concepts for 1×M-power dividers and a polarization beam splitter.