Abstract
ABSTRACTIntegrated photonics enables the miniaturization of bulk optical components for biosensing applications such as optical coherence tomography (OCT) and is therefore promising for future lab-on-chip solutions. Here, we report the design and simulation of a compact low loss broadband beam splitter with arbitrary coupling ratios on silicon nitride platform for OCT systems. The reported coupler uses asymmetric waveguide-based phase control section for 10:90, 20:80, 30:70, 40:60, and 50:50 splitting ratios and is broadband over 100 nm with the central wavelength of 850 nm. The couplers are realized for transverse electric, transverse magnetic, and fully vectorial modes, and maximum excess loss for all mode types is reported to be less than 0.19 dB. The design tolerance of waveguide width and thickness of the designed coupler is further calculated and is within fabrication limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.