We explored the influence of habitat structure on bird density and species richness in the poorly known bird communities in the steppes of Eastern Morocco, along a 200 km long N–S gradient of increasing aridity. The birds were surveyed, and habitat structure was measured in 44 transects regularly distributed along the gradient and during the winter and spring seasons in two consecutive years. After applying a principal component analysis (PCA), five axes were identified, including one related to the latitude–altitude–soil-type gradient and another describing the development of herbaceous vegetation. Generalized linear models were used to explore the relations between bird density and species richness with PCA axes in each season, considering both the entire community and groups of granivorous, insectivorous, and mixed-diet species. More than 90% of the birds were year-round residents, with larks dominating the community in both seasons. We conclude that a distinct multifactorial response can be identified for each functional group of species. In the winter, the community is mainly affected by the structure of the habitat, while aridity (and its assumed relation to primary production) is less influential. In the spring, habitat structure continues to have the greatest explanatory power, but location along the aridity gradient becomes more relevant. These findings reveal the interaction of the negative effects of climatic and anthropogenic changes in the habitat available to these bird communities, with a greater impact expected on birds with diets that include seeds, as well as a general shift of optimal breeding conditions toward more northerly latitudes.
Read full abstract