The main objective was to assess the effects of abdominal breathing (AB) versus subject's own breathing on femoral venous blood flow (Qfv) and their repercussions on central hemodynamics at rest and during exercise contrasting healthy subjects versus heart failure (HF) patients. We measured esophageal and gastric pressure (PGA), Qfv and parameters of central hemodynamics in eight healthy subjects and nine HF patients, under four conditions: subject's own breathing and AB (∆PGA ≥ 6 cmH2O) at rest and during knee extension exercises (15% of 1 repetition maximum) until exhaustion. Qfv and parameters of central hemodynamics [stroke volume (SV), cardiac output (CO)] were measured using Doppler ultrasound and impedance cardiography, respectively. At rest, healthy subjects Qfv, SV, and CO were higher during AB than subject's breathing (0.11 ± 0.02 vs. 0.06 ± 0.00 L·min−1, 58.7 ± 3.4 vs. 50.1 ± 4.1 mL and 4.4 ± 0.2 vs. 3.8 ± 0.1 L·min−1, respectively, P ≤ 0.05). ∆SV correlated with ∆PGA during AB (r = 0.89, P ≤ 0.05). This same pattern of findings induced by AB was observed during exercise (SV: 71.1 ± 4.1 vs. 65.5 ± 4.1 mL and CO: 6.3 ± 0.4 vs. 5.2 ± 0.4 L·min−1; P ≤ 0.05); however, Qfv did not reach statistical significance. The HF group tended to increase their Qfv during AB (0.09 ± 0.01 vs. 0.07 ± 0.03 L·min−1, P = 0.09). On the other hand, unlike the healthy subjects, AB did not improve SV or CO neither at rest nor during exercise (P > 0.05). In healthy subjects, abdominal pump modulated venous return improved SV and CO at rest and during exercise. In HF patients, with elevated right atrial and vena caval system pressures, these findings were not observed.
Read full abstract