X-ray를 이용한 여성의 유방암 검사인 유방조영술은 유방암의 초기 단계에서의 진단을 위한 효과적인 방법이다. 컴퓨터 지원 검출(CAD) 시스템은 유방조영술을 통한 진단 시 의사가 놓치기 쉬운 유방암의 징후인 종괴의 검출을 도와 유방암 진단율을 높이는 수단이다. 종괴는 다양한 모양을 지니며 경계가 뚜렷하지 않기 때문에 검출이 어렵고 결과적으로 비-종괴 영역을 포함한 많은 수의 종괴 후보영역이 CAD 시스템에서 검출된다. 따라서 CAD 시스템 설계 시 검출된 많은 수의 종괴 후보영역으로부터 실제 악성 종괴 영역을 분류할 수 있도록 우수한 성능의 분류기가 요구된다. 본 논문에서는 피셔 분별 사전학습을 통해 개선된 Sparse 표현(SR) 기반 분류방법을 제안한다. 개선된 SR 기반 분류기가 기존의 CAD 시스템에서 주로 사용되어온 Support Vector Machine (SVM) 분류기 보다 우수함을 비교실험을 통해 확인했다. Mammography, the process of using X-ray to examine the woman breast, is the one of the effective tools for detecting breast cancer at an early state. In screening mammogram, Computer-Aided Detection(CAD) system helps radiologist to diagnose cases by detecting malignant masses. A mass is an important lesion in the breast that can indicate a cancer. Due to various shapes and unclear boundaries of the masses, detecting breast masses is considered a challenging task. To this end, CAD system detects a lot of regions of interest including normal tissues. Thus it is important to develop the well-organized classifier. In this paper, we propose an enhanced sparse representation (SR) based classifier using Fisher discrimination dictionary learning. Experimental results show that the proposed method outperforms the existing support vector machine (SVM) classifier.