A probabilistic estimation model for forest biomass using unmanned aerial vehicle (UAV) photography was developed. We utilized a machine-learning-based object detection algorithm, a mask region-based convolutional neural network (Mask R-CNN), to detect trees in aerial photographs. Subsequently, Bayesian regression was used to calibrate the model based on an allometric model using the estimated crown diameter (CD) obtained from aerial photographs and analyzed the diameter at breast height (DBH) data acquired through terrestrial laser scanning. The F1 score of the Mask R-CNN for individual tree detection was 0.927. Moreover, CD estimation using the Mask R-CNN was acceptable (rRMSE = 10.17%). Accordingly, the probabilistic DBH estimation model was successfully calibrated using Bayesian regression. A predictive distribution accurately predicted the validation data, with 98.6% and 56.7% of the data being within the 95% and 50% prediction intervals, respectively. Furthermore, the estimated uncertainty of the probabilistic model was more practical and reliable compared to traditional ordinary least squares (OLS). Our model can be applied to estimate forest biomass at the individual tree level. Particularly, the probabilistic approach of this study provides a benefit for risk assessments. Additionally, since the workflow is not interfered by the tree canopy, it can effectively estimate forest biomass in dense canopy conditions.
Read full abstract