Targeted therapy with neoadjuvant chemotherapy for patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer has increased the rates of pathological complete response (pCR) and breast preservation surgery and improved the overall disease-free survival rate. This study aimed to determine whether tumor enhancement and shrinkage patterns in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict the efficacy of targeted therapy in patients with HER2-positive breast cancer and differentiate pCR from non-pCR. The data of 64 patients with HER2-positive breast cancer who received targeted therapy prior to surgery were retrospectively collected. All patients had complete postoperative pathological data. The pretreatment evaluation of the tumor enhancement pattern and the shrinkage pattern after two treatment cycles were assessed. The difference in the enhancement and shrinkage patterns between the pCR and non-pCR groups was evaluated via the χ2 test. Logistic regression analysis was used to assess the value of enhancement and shrinkage patterns for predicting pCR in patients with HER2-positive breast cancer. There were statistically significant differences in tumor size, estrogen receptor (ER) status, lymph node metastasis, enhancement pattern, and shrinkage pattern between the pCR and non-pCR cases. Patients with a tumor size ≤20 mm were likely to achieve pCR. ER status, lymph node metastasis, and enhancement and shrinkage patterns each had good precision for predicting pCR, and the combination of enhancement and shrinkage patterns had the highest prediction accuracy. Multivariate logistic regression analysis indicated that only enhancement pattern had a significant predictive value. Among patients with HER2-positive breast cancer, those with tumor size ≤20 mm, ER-negative status, no lymph node metastases, and mass enhancement and concentric shrinkage patterns are more likely to achieve pCR. Mass enhancement combined with concentric shrinkage had the highest accuracy in predicting pCR, indicating that preoperative imaging may be useful for guiding clinical decisions regarding targeted treatments.