Background and purposeFaDu human squamous cell carcinoma (FaDu-hSCC) demonstrates accelerated tumor repopulation during fractionated irradiation with pathological validation (Ki-67 and BrdUrd makers) in a xenograft model system. However, these and other functional assays must be performed ex vivo and post hoc. We propose a novel, in vivo, real-time assay utilizing 18F-FLT PET. Material and methodsNude mice with FaDu-hSCC were irradiated with 12 or 18 fractions of 1.8Gy ([Dm]=3.0Gy), either daily or every second day. 18F-FLT micro-PET scans were performed at different time points, FLT parameters (SUVmax, SUVmean, and T/NT) were measured. Tumor sections were stained for Ki-67 and BrdUrd, a labeling index (LI) was calculated. Imaging-pathology correlation was determined by comparing FLT parameters and immunohistochemical results. ResultsMeasured SUVmax, SUVmean and T/NT decreased significantly after daily irradiation with 12 fractions in 12days (P<0.05) and 18 fractions in 18days (P<0.05). In contrast, these parameters increased in mice treated with 12 fractions in 24days (P>0.05) and 18 fractions in 36days (P>0.05), suggesting accelerated repopulation. Similarly, Ki-67 and BrdUrd LIs demonstrated significant decreases with daily irradiation (P<0.05), and increases with every-second-day irradiation (P>0.05). 18F-FLT parameters correlated strongly with proliferation markers (r2: 0.679–0.879, P<0.001). Conclusions18F-FLT parameters were in good agreement with Ki-67 and BrdUrd Li. These results may support a potential role for 18F-FLT PET in real-time detection of tumor repopulation during fractionated radiotherapy.
Read full abstract