The LHCb collaboration has recently reported evidence for nonzero CP asymmetries in B+ decays into π+K+K-, π+π+π-, K+K+K- and K+π+π-. The branching ratios for these decays have also been measured with different values ranging from 5×10-6 to 51×10-6. If flavor SU(3) symmetry is a good symmetry for B decays, in the case that the dominant amplitude is momentum independent it is expected that branching ratios Br and CP violating rate differences [Formula: see text] satisfy, Br (π+π+π-) = 2 Br (π+K+K-), Br (K+K+K-) = 2 Br (K+π+π-) and Δ CP (π+π+π-) = 2Δ CP (π+K+K-) = -Δ CP (K+K+K-) = -2Δ CP (K+π+π-). The experimental data do not exhibit the expected pattern for the branching ratios. The rate differences for B+→π+π+π- and B+→K+ K+ K- satisfy the relation between ΔS = 0 and ΔS = 1 as well, but the other two do not, with the CP asymmetries having different signs than expected. In this paper, we study how to include momentum dependent and also SU(3) breaking effects on these decays to explain experimental data. We find that by including only the lowest order derivative terms, in the SU(3) limit, the decay patterns cannot be explained. Large SU(3) breaking effects are needed to explain the data.