Type 2 diabetes is characterized by reduced insulin sensitivity, elevated blood metabolites, and reduced mitochondrial metabolism. Insulin resistant populations often exhibit reduced expression of genes governing mitochondrial metabolism such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Interestingly, PGC-1α regulates the expression of branched-chain amino acid (BCAA) metabolism, and thus, the consistently observed increased circulating levels of BCAA in diabetics may be partially explained by reduced PGC-1α expression. Conversely, PGC-1α upregulation appears to increase BCAA catabolism. PGC-1α activity is regulated by 5′-AMP-activated protein kinase (AMPK), however, only limited experimental data exists on the effect of AMPK activation in the regulation of BCAA catabolism. The present report examined the effects of the commonly used AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) on the metabolism and expression of several related targets (including BCAA catabolic enzymes) of cultured myotubes. C2C12 myotubes were treated with AICAR at 1 mM for up to 24 h. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via qRT-PCR and western blot, respectively. AICAR treatment significantly increased mitochondrial content and peak mitochondrial capacity. AICAR treatment also increased AMPK activation and mRNA expression of several regulators of mitochondrial biogenesis but reduced glycolytic metabolism and mRNA expression of several glycolytic enzymes. Interestingly, branched-chain alpha-keto acid dehydrogenase a (BCKDHa) protein was significantly increased following AICAR-treatment suggesting increased overall BCAA catabolic capacity in AICAR-treated cells. Together, these experiments demonstrate AICAR/AMPK activation can upregulate BCAA catabolic machinery in a model of skeletal muscle.