Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy, d) On rough roads, the tire slip ratio varies widely and rapidly due to tire bouncing, and e) The braking system contains transportation delays which limit the control system bandwidth. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal, based on current and past readings of the slip ratio and brake pressure. The controller detects wheel blockage immediately and avoids excessive slipping. The ABS system performance is examined on a quarter vehicle model with nonlinear elastic suspension. The parallelity of the fuzzy logic evaluation process ensures rapid computation of the controller output signal, requiring less time and fewer computation steps than controllers with adaptive identification. The robustness of the braking system is investigated on rough roads and in the presence of large measurement noise. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance on various road types and under rapidly changing road conditions.
Read full abstract