Postencephalitic epilepsy (PEE) is a severe neurological complication following encephalitis. Early identification of individuals at high risk for PEE is important for timely intervention. To develop a large self-supervised vision foundation model using a big dataset of multi-contrast head MRI scans, followed by fine-tuning with MRI data and follow-up outcomes from patients with PEE to develop a PEE association model. Retrospective. Fifty-seven thousand six hundred twenty-one contrast-enhanced head MRI scans from 34,871 patients for foundation model construction, and head MRI scans from 144 patients with encephalitis (64 PEE, 80 N-PEE) for the PEE association model. 1.5-T, 3-T, T1-weighted imaging, T2-weighted imaging, fluid attenuated inversion recovery, T1-weighted contrast-enhanced imaging. The foundation model was developed using self-supervised learning and cross-contrast context recovery. Patients with encephalitis were monitored for a median of 3.7 years (range 0.7-7.5 years), with epilepsy diagnosed according to International League Against Epilepsy. Occlusion sensitivity mapping highlighted brain regions involved in PEE classifications. Model performance was compared with DenseNet without pre-trained weights. Performance was assessed via confusion matrices, accuracy, sensitivity, specificity, precision, F1 score, and area under the receiver operating characteristic curve (AUC). The DeLong test evaluated AUC between the two models (P < 0.05 for statistical significance). The PEE association model achieved accuracy, sensitivity, specificity, precision, F1 score, and AUC of 79.3% (95% CI: 0.71-0.92), 92.3% (95% CI: 0.80-1.00), 68.8% (95% CI: 0.55-0.87), 70.6% (95% CI: 0.61-0.90), 80.0% (95% CI: 0.71-0.93), and 81.0% (95% CI: 0.68-0.92), respectively. A significant AUC improvement was found compared to DenseNet (Delong test, P = 0.03). The association model focused on brain regions affected by encephalitis. Using extensive unlabeled data via self-supervised learning addressed the limitations of supervised tasks with limited data. The fine-tuned foundation model outperformed DenseNet, which was trained exclusively on task data. This research develops a model to assess the occurrence epilepsy after encephalitis, a severe brain inflammation condition. By using over 57,000 brain scans, the study trains a computer program to recognize patterns in brain images. The model analyzes whole-brain scans to identify areas commonly affected by the disease, such as the temporal and frontal lobes. It was tested on data from patients with encephalitis and showed better performance than older methods. The model can assess the risk of secondary epilepsy in patients with encephalitis, allowing doctors to intervene early and improve treatment outcomes for those affected by this condition. 4 TECHNICAL EFFICACY: Stage 1.
Read full abstract