BackgroundIn addition to occipital hypoperfusion, preserved metabolism of the posterior cingulate gyri (PCG) relative to the precunei is known as the cingulate island sign (CIS) in the patients with dementia with Lewy bodies (DLB). CIS has been detected using [18F]fluorodeoxyglucose positron emission tomography but not using brain perfusion single-photon emission computed tomography (SPECT). The purpose of this study was to optimize brain perfusion SPECT to enable differentiation of DLB from Alzheimer’s disease (AD) using CIS and occipital hypoperfusion.Eighteen patients with probable DLB and 17 age-matched Pittsburgh compound B-positive patients with AD underwent technetium-99m ethyl cysteinate dimer SPECT. SPECT Z-score maps were generated using the easy Z-score imaging system (eZIS) analysis software (Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, Takemura N, Arai H, Homma A, AJNR Am J Neuroradiol 28(4):731–6, 2007), which included volumes of interest (VOIs) in which a group comparison between patients with AD and cognitively normal subjects revealed significant relative hypoperfusion. We used the Montreal Neurological Institute (MNI) space anatomical border to divide the bilateral PCG to precunei VOIs into two parts, the PCG and precunei. Z-scores in the PCG, precunei, and occipital areas and ratios were analysed and compared with receiver operating characteristic (ROC) curve analyses.ResultsThe largest area under the curve (AUC) value for use in differentiating DLB from AD with the ratio of PCG to medial occipital was 0.87; the accuracy, sensitivity, and specificity were 85.7, 88.9, and 82.4 %, respectively. The AUC with the ratio of PCG to the precuneus was smaller, and it was 0.85, though no significant difference was observed between these two AUCs.ConclusionsThe Z-score ratio of the PCG within the early-AD-specific VOI to medial-occipital area is clinically useful in discriminating demented patients with DLB from those with AD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13550-016-0224-5) contains supplementary material, which is available to authorized users.
Read full abstract