A landmark is a familiar target in terms of the echoes that it can produce and is important for echolocation-based navigation by bats, robots, and blind humans. A brain-inspired system (BIS) achieves confident recognition, defined as classification to an arbitrarily small error probability (PE), by employing a voting process with an echo sequence. The BIS contains sensory neurons implemented with binary single-layer perceptrons trained to classify echo spectrograms with PE and generate excitatory and inhibitory votes in face neurons until a landmark-specific face neuron achieves recognition by reaching a confidence vote level (CVL). A discrete random step process models the vote count to show the recognition probability can achieve any desired accuracy by decreasing PE or increasing CVL. A hierarchical approach first classifies surface reflector and volume scatterer target categories and then uses that result to classify two subcategories that form four landmarks. The BIS models blind human echolocation to recognize four human-made and foliage landmarks by acquiring suitably sized and dense audible echo sequences. The sensorimotor BIS employs landmark-specific CVL values and a 2.7° view increment to acquire echo sequences that achieve zero-error recognition of each landmark independent of the initial view.
Read full abstract