Abstract

Risk assessment of the operations utilized in processing products and services always deals with uncertainties and complexities. The ever-evolving complex and dynamic circumstances make it very difficult to identify and analyze potential events affecting workers’ safety and health. Our first study was on managing the risky situations of a dynamic environment, the transport and storage of residual hazardous materials with high variation in operational times. It showed that the dynamicity of operational functions has a direct relation to the risk of accidents and suggested that such environments require a system to decide whether to perform each new action on a suspected risk condition or not. A practical framework, engaged close to the variable functions involved in potential events, is needed to provide reliable measures for risk assessment. Based on these measures, this framework would help to make decisions at the right time and to take preventive actions. It would support the decision-making process by recognizing the risk-associated features of available information and offer continuously updated alternatives for appropriate actions to prevent unsafe operations. In our second study, we developed a brain-inspired decision-making system for the real-time configuration of dynamic environments. That decision-making system builds knowledge from the least to the most similarities between experienced states to determine the most appropriate action(s) to rapidly reorient risky operations to a safe condition. This paper aims to verify the second study’s proposed system performance in the simulated environment discussed in our first study on residual hazardous materials transportation. We extract information, including the effective factors, from that first study and use it in the decision-making system to prevent risky transportation. This model would be useful in daily risk management as a practical framework for establishing safe operations in today’s industrial environments that involve dangerous chemical or radioactive products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.