The distribution of the CB1 cannabinoid receptor was studied in the monkey basal forebrain by immunocytochemistry and electron microscopy, using an antibody to the CB1 brain cannabinoid receptor. Large numbers of labelled neurons were observed in the medial septum, nucleus of the diagonal band, and the nucleus basalis of Meynert. The labelled neurons had dimensions similar to those of cholinergic neurons and were larger than those of GABAergic neurons. Double immunolabelling with an antibody to the synthetic enzyme for acetylcholine, choline acetyl transferase (ChAT) showed that CB1-positive neurons were also positive for ChAT, whilst electron microscopy confirmed that CB1-labelled neurons contained lipofuscin granules and dense clusters of rough endoplasmic reticulum, characteristic of cholinergic neurons. The dense labelling of cholinergic neurons for CB1 is interesting from the standpoint of neuroprotection. The CB1 receptor has been shown to couple in an inhibitory manner to voltage dependent calcium channels, and the dense labelling of CB1 in cholinergic neurons would therefore suggest that CB1 receptors could be important in limiting calcium influx through voltage dependent calcium channels in these neurons. This could serve to limit intracellular calcium concentrations, and consequent calcium mediated injury, in these neurons.
Read full abstract