AbstractThis study utilized Bayesian inference in a genome‐wide association study (GWAS) to identify genetic markers associated with traits relevant to the adaptation of Hereford and Braford cattle breeds. We focused on eye pigmentation (EP), weaning hair coat (WHC), yearling hair coat (YHC), and breeding standard (BS). Our dataset comprised 126,290 animals in the pedigree. Out of these, 233 sires were genotyped using high‐density (HD) chips, and 3750 animals with medium‐density (50 K) single‐nucleotide polymorphism (SNP) chips. Employing the Bayes B method with a prior probability of π = 0.99, we identified and tagged single nucleotide polymorphisms (Tag SNPs), ranging from 18 to 117 SNPs depending on the trait. These Tag SNPs facilitated the construction of reduced SNP panels. We then evaluated the predictive accuracy of these panels in comparison to traditional medium‐density SNP chips. The accuracy of genomic predictions using these reduced panels varied significantly depending on the clustering method, ranging from 0.13 to 0.65. Additionally, we conducted functional enrichment analysis that found genes associated with the most informative SNP markers in the current study, thereby providing biological insights into the genomic basis of these traits.
Read full abstract