Distributed control of AC microgrids is one of the most popular methods in the islanded operation mode. Whereas, most of the existing studies either do not consider the potential threat of privacy security or rely on the assumption of ideal communication networks. To this end, this paper presents a novel privacy-preserving distributed secondary frequency control strategy for the privacy protection problem of an islanded AC microgrid with constrained communication. The key contributions of this paper are threefold. (1) Different from the existing privacy-preserving approaches used in AC microgrids, a time-varying function is introduced to mask interactive information such that the frequency cannot be reconstructed by malicious attackers. (2) An event-triggered communication scheme is employed to cope with the constrained communication environment. (3) A privacy-preserving distributed event-triggered control strategy with communication delay is developed such that the frequency restoration and active power sharing of the microgrid are guaranteed. Moreover, the maximum communication delay that the proposed control can withstand is analyzed. Simulation results show the properties of the privacy preservation, the decrease of communication load, and the bounded communication delay allowed in the proposed control strategy.
Read full abstract