In this study, the age-hardening response and microstructural evolution of an as-extruded biodegradable Zn-1.5Cu-1.5Ag (wt.%) alloy during ageing at 25 ℃, 100 ℃, 150 ℃ and 200 ℃ are studied. The age-hardening response is generally weak, and the largest hardness increment is observed after ageing at 150 ℃ for 24 h. Discontinuous precipitation (DP) and continuous precipitation (CP) occur competitively during ageing at 150 ℃ or 200 ℃, while only DP is observed during ageing at 25 ℃ or 100 ℃. All the precipitates formed through DP and CP are identified as ε-(Ag, Cu)Zn4 that has a hexagonal structure. Analysis of possible strengthening mechanisms shows that grain boundary strengthening and precipitation hardening contribute to the major part of yield strength in the as-extruded condition. Ageing treatments generate a limited increment in yield strength due to the small difference between the hardness of ε-(Ag, Cu)Zn4 and the Zn matrix and the reduced solid solution strengthening effect. Artificial ageing at 150 ℃ for 48 h effectively improves the stability of the mechanical properties of the as-extruded Zn-1.5Cu-1.5Ag alloy. This process fully depletes the excessive solutes in the supersaturated Zn matrix, ensuring that the alloy maintains consistent mechanical properties when stored at room temperature.
Read full abstract