This paper investigates the effects of radiation, internal heat source and magnetohydrodynamics (MHD) on the mixed convective boundary layer flow of a Casson nanofluid within a porous medium that is saturated and subject to an exponentially stretching sheet. The nanofluid model incorporates Brownian motion and thermophoresis, and the Darcy model is employed for the porous medium. By applying an appropriate similarity transformation, the nonlinear governing boundary layer equations are converted into a set of nonlinear coupled ordinary differential equations. These equations are then solved numerically using the Hermite wavelet method, with simulations conducted through the MATHEMATICA programming language. The analysis covers various aspects including temperature distribution, velocity, solute concentration and several engineering parameters such as skin friction coefficients, the Nusselt number (rate of heat transfer) and the Sherwood number (rate of mass transfer), all evaluated based on dimensionless physical parameters. The results indicate that elevated radiation intensifies temperatures and leads to thicker thermal boundary layers. As the Casson parameter increases, both the velocity and the momentum boundary layer become narrower. Additionally, a more pronounced chemical reaction rate reduces the thickness of the solutal boundary layer. The accuracy and reliability of the numerical Hermite wavelet method are validated through a comparative analysis with previous studies, demonstrating excellent concordance and confirming the robustness of the computational approach.
Read full abstract