AbstractThis study investigates the grain boundary energy dependence on segregated dopants in nanocrystalline zinc aluminate ceramics. Atomistic simulations of Σ3 and Σ9 grain boundaries showed that trivalent ions of varying ionic radii [Sc3+ (74.5 pm), In3+ (80.0 pm), Y3+ (90.0 pm), and Nd3+ (98.3 pm)] have a tendency to segregate to both interfaces, with Y3+ presenting the highest segregation potentials. The connection between segregation and the reduction of interfacial energies was explored by measuring the grain boundary energy on nanoceramics fabricated via high‐pressure spark plasma sintering (HP‐SPS) using differential scanning calorimetry (DSC). The results revealed that Y3+ doping at 0.5 mol% reduces the grain boundary energy in zinc aluminate nanoceramics from 1.1–1.3 J/m2 to 0.6–0.8 J/m2; the range correlates with the observed size dependence of the excess energy, with higher values observed for the smaller grain sizes (∼17 nm). The noted decrease in interfacial energies for doped samples suggests it is indeed possible to alter the stability of zinc aluminate grain boundaries via dopant segregation.
Read full abstract