We compute the suppression of bottomonium in the quark-gluon plasma using the three-loop QCD static potential. The potential describes the spin-averaged bottomonium spectrum below threshold with a less than 1% error. Within potential nonrelativistic quantum chromodynamics and an open quantum systems framework, we compute the evolution of the bottomonium density matrix. The values of the quarkonium transport coefficients are obtained from lattice QCD measurements of the bottomonium in-medium width and thermal mass shift; we additionally include for the first time a vacuum contribution to the dispersive coefficient γ. Using the three-loop potential and the values of the heavy quarkonium transport coefficients, we find that the resulting bottomonium nuclear modification factor is consistent with experimental observations, while at the same time reproducing the lattice measurements of the in-medium width. Published by the American Physical Society 2024