Hierarchical self-assembly of synthetic polymers in solution represents one of the sophisticated strategies to replicate the natural superstructures which lay the basis for their superb functions. However, it is still quite challenging to increase the degree of complexity of the as-prepared assemblies, especially in a large scale. Liquid-liquid phase separation (LLPS) widely exists in cells and is assumed to be responsible for the formation of many cellular organelles without membranes. Herein, through integrating LLPS with the polymerization-induced self-assembly (PISA), a coacervate-assisted PISA (CAPISA) methodology to realize the one-pot and scalable preparation of hierarchical bishell capsules (BCs) from nanosheets with ultrathin lamellae phase (sub-5nm), microflakes, unishell capsules to final BCs in a bottom-up sequence is presented. Both the self-assembled structure and the dynamic formation process of BCs have been disclosed. Since CAPISA has combined the advantages of coacervates, click chemistry, interfacial reaction and PISA, it is believed that it will become a promising option to fabricate biomimetic polymer materials with higher structural complexity and more sophisticated functions.