We study the Yukawa unification, in particular, the unification of the Yukawa coupling constants of $b$ and $\tau$, in the framework of supersymmetric (SUSY) model. We concentrate on the model in which the SUSY breaking scalar masses are of the order of the gravitino mass while the gaugino masses originate from the effect of anomaly mediation and hence are one-loop suppressed relative to the gravitino mass. We perform an accurate calculation of the Yukawa coupling constants of $b$ and $\tau$ at the grand unified theory (GUT) scale, including relevant renormalization group effects and threshold corrections. In particular, we study the renormalization group effects, taking into account the mass splittings among sfermions, gauginos, and the standard model particles. We found that the Yukawa coupling constant of $b$ at the GUT scale is about $70\ \%$ of that of $\tau$ if there is no hierarchy between the sfermion masses and the gravitino mass. Our results suggest sizable threshold corrections to the Yukawa coupling constants at the GUT scale or significant suppressions of the sfermion masses relative to the gravitino mass.
Read full abstract