We discuss a relationship between Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds, the Fomin–Kirillov algebra, and the generalized nil-Hecke algebra. We show that the nonnegativity conjecture in the Fomin–Kirillov algebra implies the nonnegativity of the Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds for type A. Motivated by this connection, we also prove that the (equivariant) Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds are certain summations of the structure constants of the equivariant cohomology of Bott–Samelson varieties. We also discuss refined positivity conjectures of the Chern–Schwartz–MacPherson classes for Schubert cells motivated by the nonnegativity conjecture in the Fomin–Kirillov algebra.