Professor Lou Massa’s contributions since the late 1960s to the founding of the field now known as “Quantum Crystallography” (QCr) are briefly described. The term itself has been coined in 1995 by L. Huang, L. Massa, and J. Karle (1985 Nobel Laureate in Chemistry). Originally, QCr referred to the Clinton-Massa’s iterative approach that, for the first time, delivered N-representable electron densities that are consistent with the observed structure factors. These densities satisfy, at once, experimental observation and the necessarily underlying quantum mechanical requirement of being derived from an antisymmetric wavefunction. The single-determinantal quantum mechanical structure Huang, Massa, and Karle (HMK) imposed in their original work can be extended to any method that uses MOs including CI or DFT, as they demonstrate in their papers. HMK use the Clinton-Massa method to reconstruct approximations to the first order reduced density matrix of large molecules in a piecemeal manner from computationally-tractable fragments. The idea was also adapted by J. Hernandez Trujillo and R. F. W. Bader in the context of the Quantum Theory of Atoms in Molecules (QTAIM). Massa et al. simplified and generalized this fragmentation method into what came to be known as the “Kernel Energy Method” (KEM) which delivers the properties of large molecules accurately, at a fraction of the computational time, and within any model chemistry as applications to DNA, tRNA, the proto-ribosome, insulin, and graphene, amply demonstrate. Lou Massa has also pushed the envelope in other directions as well. In 1992, he and W. Lipscomb (1976 Nobel Laureate in Chemistry) published several papers predicting the structure and stability of Boron nanotubes and boron fullurene 12 years before they were eventually synthesized in laboratories at Yale and at Brookhaven. More recently, in 2006 L. Massa, J. Karle, and A. Yonath (2009 Nobel Laureate in Chemistry) (MKY) proposed a startling alternative to the then widely-accepted mechanism of the peptide bond formation in the active site of the ribosome. In sharp contrast with the accepted “shuttle mechanism”, MKY’s “direct” mechanism is simpler and, importantly, reproduces the measured thermodynamic and kinetic parameters. Massa has also contributed to other domains, for example interstellar chemistry, and to the policy, history, and philosophy of science. His TV program and Oxford University Press book (both titled “Science and the Written Word”) represent an invaluable and candid documentation of some of the key discoveries in the words of a dozen Nobel Laureates and a constellation of scholars representing the Who’s Who of current science. It is with both admiration and affection that this paper (and this issue) is dedicated to Lou Massa, the person and the scientist.
Read full abstract