Photodynamic therapy (PDT) has attracted extensive attention in cancer treatment because of its minimum trauma, less side effects, and so on. Photosensitizers, as one of the core elements of PDT, usually have to face problems such as poor water solubility and light stability, lack of targeting, and other problems, which seriously affect the therapeutic effect. In this work, two BODIPY (boron-dipyrromethene)-based monofunctional Pt (II) complexes, 1a and 2a, were designed and synthesized, and their PDT effect was studied. The Pt atom improved the singlet oxygen quantum yield (0.19 for 1a and 0.14 for 2a, respectively), which effectively improves the efficiency of PDT. MTT assay confirmed that the short time photo-irradiation distinctly promoted antitumor cytotoxicity of Pt (II) compounds against different cell lines. For 1a under irradiation, the IC50 value of cancer cell lines were 13.1 μM for HeLa cells and 7.6 μM for MCF-7 cells, while those of normal cell lines were 32.4 μM for HBL-100 cells and 48.6 μM for L02 cells. The results demonstrated that 1a showed specific phototoxicity to cancer cells. This specific selectivity could be attributed to the synergistic effect of increased cellular uptake (determined by ICP-MS) and higher ROS generation (detected by Cell ROX Deep Red) in cancer cells after irradiation. This study laid the foundation for the future design and synthesis of effective PDT photosensitizers.