In this paper, we demonstrate that using differential operators one can construct the complete unified web for expansions of amplitudes for a wide range of theories. We first re-derive the expansion of multi-trace Einstein-Yang-Mills amplitudes to Kleiss-Kuijf basis of color-ordered Yang-Mills amplitudes, by applying proper differential operators which modify the coefficients in the recursive expansion of single-trace Einstein- Yang-Mills amplitudes. Next, through differential operators which act on amplitudes only, we obtain expansions of amplitudes of Yang-Mills theory, Yang-Mills-scalar theory, ϕ4 theory, non-linear sigma model, bi-adjoint scalar theory, Born-Infeld theory, Dirac-Born-Infeld theory and special Galileon theory. Then, together with other results in literatures, the complete unified web is achieved. This web for expansions is the dual version of the unified web for differential operators. Thus, connections among amplitudes of a variety of theories, which are reflected by Cachazo-He-Yuan integrands and differential operators previously, can also be represented by expansions. We also find that amplitudes of all theories in the web can be expanded to double color-ordered bi-adjoint scalar amplitudes in the double copy formula.