Given two functions f,g:Irightarrow mathbb {R} and a probability measure mu on the Borel subsets of [0, 1], the two-variable mean M_{f,g;mu }:I^2rightarrow I is defined by Mf,g;μ(x,y):=(fg)-1∫01f(tx+(1-t)y)dμ(t)∫01g(tx+(1-t)y)dμ(t)(x,y∈I).\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} M_{f,g;\\mu }(x,y) :=\\bigg (\\frac{f}{g}\\bigg )^{-1}\\left( \\frac{\\int _0^1 f\\big (tx+(1-t)y\\big )d\\mu (t)}{\\int _0^1 g\\big (tx+(1-t)y\\big )d\\mu (t)}\\right) \\quad (x,y\\in I). \\end{aligned}$$\\end{document}This class of means includes quasiarithmetic as well as Cauchy and Bajraktarević means. The aim of this paper is, for a fixed probability measure mu , to study their equality problem, i.e., to characterize those pairs of functions (f, g) and (F, G) for which Mf,g;μ(x,y)=MF,G;μ(x,y)(x,y∈I)\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} M_{f,g;\\mu }(x,y)=M_{F,G;\\mu }(x,y) \\quad (x,y\\in I) \\end{aligned}$$\\end{document}holds. Under at most sixth-order differentiability assumptions for the unknown functions f, g and F, G, we obtain several necessary conditions in terms of ordinary differential equations for the solutions of the above equation. For two particular measures, a complete description is obtained. These latter results offer eight equivalent conditions for the equality of Bajraktarević means and of Cauchy means.