LetXbe a standard Borel space (i.e., a Polish space with the associated Borel structure), and letEbe acountableBorel equivalence relation onX, i.e., a Borel equivalence relationEfor which every equivalence class [x]Eis countable. By a result of Feldman-Moore [FM],Eis induced by the orbits of a Borel action of a countable groupGonX.The structure of general countable Borel equivalence relations is very little understood. However, a lot is known for the particularly important subclass consisting of hyperfinite relations. A countable Borel equivalence relation is calledhyperfiniteif it is induced by a Borel ℤ-action, i.e., by the orbits of a single Borel automorphism. Such relations are studied and classified in [DJK] (see also the references contained therein). It is shown in Ornstein-Weiss [OW] and Connes-Feldman-Weiss [CFW] that for every Borel equivalence relationEinduced by a Borel action of a countable amenable groupGonXand for every (Borel) probability measure μ onX, there is a Borel invariant setY⊆Xwith μ(Y) = 1 such thatE↾Y(= the restriction ofEtoY) is hyperfinite. (Recall that a countable group G isamenableif it carries a finitely additive translation invariant probability measure defined on all its subsets.) Motivated by this result, Weiss [W2] raised the question of whether everyEinduced by a Borel action of a countable amenable group is hyperfinite. Later on Weiss (personal communication) showed that this is true forG= ℤn. However, the problem is still open even for abelianG. Our main purpose here is to provide a weaker affirmative answer for general amenableG(and more—see below). We need a definition first. Given two standard Borel spacesX, Y, auniversally measurableisomorphism betweenXandYis a bijection ƒ:X→Ysuch that both ƒ, ƒ-1are universally measurable. (As usual, a mapg:Z→W, withZandWstandard Borel spaces, is calleduniversally measurableif it is μ-measurable for every probability measure μ onZ.) Notice now that to assert that a countable Borel equivalence relation onXis hyperfinite is trivially equivalent to saying that there is a standard Borel spaceYand a hyperfinite Borel equivalence relationFonY, which isBorelisomorphic toE, i.e., there is a Borel bijection ƒ:X→YwithxEy⇔ ƒ(x)Fƒ(y). We have the following theorem.
Read full abstract