Abstract

We show that every locally finite bipartite Borel graph satisfying a strengthening of Hall's condition has a Borel perfect matching on some comeager invariant Borel set. We apply this to show that if a group acting by Borel automorphisms on a Polish space has a paradoxical decomposition, then it admits a paradoxical decomposition using pieces having the Baire property. This strengthens a theorem of Dougherty and Foreman who showed that there is a paradoxical decomposition of the unit ball in R3 using Baire measurable pieces. We also obtain a Baire category solution to the dynamical von Neumann–Day problem: if a is a nonamenable action of a group on a Polish space X by Borel automorphisms, then there is a free Baire measurable action of F2 on X which is Lipschitz with respect to a.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.