Piezoelectrically polarized electric field can provide a strong driving force for the separation of the photoinduced charge carriers that has attracted a wide attention in the field of photocatalysis. In this paper, a new type of piezoelectric borate material CsCdBO3 exhibits a high efficiency for the degradation of typical organic pollutants under the synergistic effects of strain and light conditions. The oxidation rate constant of the synergistic effect is 0.653 min-1, which is 3.77 times that of just under visible light irradiation. Further, the material shows a higher efficiency when treated both under the clockwise stirring direction and a high stirring speed. A characteristic piezoresponse hysteresis loop was detected using the piezoresponse force microscopy (PFM) approach. The strain-driven polarized electric field facilitates to promote the photoinduced electron-hole pair separation, thus enhancing the photocatalytic activity. The present work provides a new direction of the borate with a noncentrosymmetric structure in the environmental remediation.