Ultrahigh molecular weight polyethylene (UHMWPE) is a class of high-performance engineering plastics, exhibiting a unique set of properties and applications. Although many advances have been achieved in recent years, the synthesis of UHMWPE is still a great challenge. In this contribution, a series of zirconium and hafnium complexes, [2,6-(R1)2-4-R2-C6H2-N-C(camphyl)=C(camphyl)-N-2,6-(R1)2-4-R2-C6H2]MMe2(THF) (1-Zr: R1 = Me, R2 = H, M = Zr; 2-Zr: R1 = Me, R2 = Me, M = Zr; 1-Hf: R1 = Me, R2 = H, M = Hf; 2-Hf: R1 = Me, R2 = Me, M = Hf), bearing bidentate NN ligands with the bulky camphyl backbone were synthesized by the stoichiometric reactions of α-diimine ligands with MMe4 (M = Hf or Zr). All Zr and Hf metal complexes were analyzed using 1H and 13C NMR spectroscopy, and the molecular structures of complexes 1-Zr and 1-Hf were determined by single-crystal X-ray diffraction, revealing that the original α-diimine ligand was selectively reduced into the ene-diamido form and generated an 1,3-diaza-2-metallocyclopentene ring in the metal complexes. Zr complexes 1-Zr and 2-Zr showed moderate activity (up to 388 kg(PE)·mol−1(M)·h−1), poor copolymerization ability, but unprecedented molecular weight capability toward ethylene/1-octene copolymerization. Therefore, copolymers with ultrahigh molecular weights (>600 or 337 × 104 g∙mol−1) were successfully synthesized by 1-Zr or 2-Zr, respectively, with the borate cocatalyst [Ph3C][B(C6F5)4]. Surprisingly, Hf complexes 1-Hf and 2-Hf showed negligible activity under otherwise identical conditions, revealing the great influence of metal centers on catalytic performances.
Read full abstract