Abstract
AbstractDirect coordinative copolymerization of ethylene with functionalized co‐monomers is a long‐sought‐after approach to introducing polyolefin functionality. However, functional‐group Lewis basicity typically depresses catalytic activity and co‐monomer incorporation. Finding alternatives to intensively studied group 4 d0 and late‐transition‐metal catalysts is crucial to addressing this long‐standing challenge. Shown herein is that mono‐ and binuclear organoscandium complexes with a borate cocatalyst are active for ethylene + amino olefin [AO; H2C=CH(CH2)nNR2] copolymerizations in the absence of a Lewis‐acidic masking reagent. Both activity (up to 4.2×102 kg mol−1⋅h−1> atm−1>) and AO incorporation (up to 12 % at 0.2 m [AO]) are appreciable. Linker‐length‐dependent (n) AO incorporation and mechanistic probes support an unusual functional‐group‐assisted enchainment mechanism. Furthermore, the binuclear catalysts exhibit enhanced AO tolerance and enhanced long chain AO incorporation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.