We show: The Boolean Prime Ideal theorem is equivalent to each one of the statements: “For every family of compact spaces, for every family of basic closed sets of the product with the fip there is a family of subbasic closed sets () with the fip such that for every ”. “For every compact Loeb space (the family of all non empty closed subsets of has a choice function) and for every set X the product is compact”. (: the axiom of choice restricted to families of finite sets) implies “every well ordered product of cofinite topologies is compact” and “every well ordered basic open cover of a product of cofinite topologies has a finite subcover”. (: the axiom of choice restricted to countable families of finite sets) iff “every countable product of cofinite topologies is compact”. (: every filter of extends to an ultrafilter) is equivalent to the proposition “for every compact Loeb space having a base of size and for every set X of size the product is compact”.
Read full abstract