There are two construction methods of designs from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(n,m)$ </tex-math></inline-formula> -bent functions, known as translation and addition designs. In this article we analyze, which equivalence relation for Boolean bent functions, i.e. <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(n,1)$ </tex-math></inline-formula> -bent functions, and vectorial bent functions, i.e. <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(n,m)$ </tex-math></inline-formula> -bent functions with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2\le m\le n/2$ </tex-math></inline-formula> , is coarser: extended-affine equivalence or isomorphism of associated translation and addition designs. First, we observe that similar to the Boolean bent functions, extended-affine equivalence of vectorial <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(n,m)$ </tex-math></inline-formula> -bent functions and isomorphism of addition designs are the same concepts for all even <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m\le n/2$ </tex-math></inline-formula> . Further, we show that extended-affine inequivalent Boolean bent functions in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> variables, whose translation designs are isomorphic, exist for all <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n\ge 6$ </tex-math></inline-formula> . This implies, that isomorphism of translation designs for Boolean bent functions is a coarser equivalence relation than extended-affine equivalence. However, we do not observe the same phenomenon for vectorial bent functions in a small number of variables. We classify and enumerate all vectorial bent functions in six variables and show, that in contrast to the Boolean case, one cannot exhibit isomorphic translation designs from extended-affine inequivalent vectorial <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(6,m)$ </tex-math></inline-formula> -bent functions with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m\in \{ 2,3 \}$ </tex-math></inline-formula> .