Abstract The depositional history of the Bonneville Salt Flats, a perennial saline pan in Utah's Bonneville basin, has poor temporal constraints, and the climatic and geomorphic conditions that led to saline pan formation there are poorly understood. We explore the late Pleistocene to Holocene depositional record of Bonneville Salt Flats cores. Our data challenge the assumption that the saline pan formed from the desiccation of Lake Bonneville, the largest late Pleistocene lake in the Great Basin, which covered this area from 30 to 13 cal ka BP. We test two hypotheses: whether climatic transitions from (1) wet to arid or (2) arid to wet led to saline pan deposition. We describe the depositional record with radiocarbon dating, sedimentological structures, mineralogy, diatom, ostracode, and portable X-ray fluorescence spectrometer measurements. Gypsum and carbonate strontium isotope ratio measurements reflect changes in water sources. Three shallow saline lake to desiccation cycles occurred from >45 and >28 cal ka BP. Deflation removed Lake Bonneville sediments between 13 and 8.3 cal ka BP. Gypsum deposition spanned 8.3 to 5.4 cal ka BP, while the oldest halite interval formed from 5.4 to 3.5 cal ka BP during a wetter period. These findings offer valuable insights for sedimentologists, archaeologists, geomorphologists, and land managers.