The present study compares the behaviour of an anorganic bone matrix material and a synthetic β-Tricalcium phosphate employed as grafting materials in a sinus floor augmentation two step protocol in humans. In order to estimate the initial occupation level for the two materials, an ‘in vitro’ simulation has been performed to analyse macroporosity created due to particle packing in terms of porosity and interparticle distances. Grafting in the sinus floor augmentation was performed by filling the defects only with pure grafting materials without autogenous bone addition. The new-bone generated is 100% based on the osteoconductive properties of the grafted materials in contact with physiological fluids. The implants were placed 8 months after the grafting procedure. All the implanted positions were biopsied and embedded in methacrylate resin. Histomorphometric analyses were done over thin film undecalcified sections. Packing simulations allow establishing a comparison of the resorbed volumes related to the initial occupancy of the grafting materials inside the defect. The nature of this interconnected pore network is very alike for either material so new-bone generated was similar (∼ 35 vol.%).