Background: Extracellular vesicles (EVs) derived from stem cells demonstrate significant potential in bone regeneration. Adipose tissue is regarded as a stem cell reservoir with abundant reserves and easy accessibility. Compared to adipose-derived stem cells (ASCs), dedifferentiated fat cells (DFATs) possess similar stem cell characteristics but exhibit greater proliferative capacity, higher homogeneity, and an enhanced osteogenic differentiation potential. This study is the first to examine the effect of DFATs-derived EVs on bone regeneration and elucidate their potential mechanisms of action. Methods: Primary DFATs were cultured using the “ceiling culture” method and EVs were isolated by ultracentrifugation and characterized. Experiments were performed to assess the impact of the EVs on the proliferation, migration, and osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Subsequently, high-throughput miRNA sequencing was conducted on the EVs derived from DFATs that had undergone 0 days (0d-EVs) and 14 days (14d-EVs) of osteogenic differentiation. Results: The results indicated that the EVs derived from DFATs which experienced 14 days of osteogenic induction significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. High-throughput sequencing results revealed that up-regulated miRNAs in the 14d-EVs were primarily involved in biological processes such as the Notch signaling pathway and the positive regulation of cell movement and migration. The target genes of these differently expressed miRNAs were enriched in osteogenesis-related signaling pathways. Conclusion: This study innovatively demonstrated that conditioned EVs (14d-EVs) derived from DFATs promoted the osteogenic differentiation of BMSCs via miRNAs, offering a promising cell-free therapeutic option for bone defect.
Read full abstract