Basophils are known to produce a large amount of IL-4 in response to stimuli and play a role in the initiation and propagation of type 2 inflammations. S. aureus secretes a series of pore-forming toxins: α-hemolysin, γ-hemolysins, and leukocidins. In this study, we examined the effects of α-hemolysin, γ-hemolysins (HlgAB and HlgCB), and leukocidins (LukAB, LukED, and Panton-Valentine leukocidin) on the function of basophils. All pore-forming toxins except for Panton-Valentine leukocidin bound to murine bone marrow-derived basophils (BMBs). HlgAB and LukED but not other toxins evoked the leakage of lactate dehydrogenase from BMBs at the concentration of 30 μg/ml γ-hemolysins, HlgAB and HlgCB, induced the secretion of IL-4 in BMBs at concentrations above 3.3 μg/ml. LukAB did not induce, and Hla and LukED induced only a small amount of IL-4. HlgBΔstem, the 5 amino acids deletion mutant of HlgB in the stem region, diminished IL-4 secretion by HlgAB and HlgCB in BMBs. These results suggest that the cell damage and the induction of IL-4 in basophils by HlgAB require pore formation. The induction of IL-4 by γ-hemolysins was also observed in fleshly isolated murine basophils. These results demonstrate a novel function of γ-hemolysins, the induction of IL-4 in basophils, in an IgE-independent manner.
Read full abstract