This study evaluated the bone-to-implant contact (BIC) of various surface-treated dental implants using high-resolution micro-CT in rabbit bone, focusing on the effects of different treatments on osseointegration and implant stability before and after bone demineralization. Six male New Zealand White rabbits were used. Four implant types were tested: machined surface with anodizing, only etching, sandblasting with Al2O3 + etching, and sandblasting with TiO2 + etching. Implants were scanned with high-resolution micro-CT before and after demineralization. Parameters like implant volume, surface area, and BIC were determined using specific software tools. During demineralization, the BIC changed about 6% for machined surface with anodizing, 5% for only etching, 4% for sandblasting with Al2O3 + etching, and 10% for sandblasting with TiO2 + etching. Demineralization reduced BIC percentages, notably in the machined surface with anodizing and sandblasting with TiO2 + etching groups. Etching and sandblasting combined with etching showed higher initial BIC compared to anodizing alone. Demineralization negatively impacted the BIC across all treatments. This study underscores the importance of surface modification in implant integration, especially in compromised bone. Further research with larger sample sizes and advanced techniques is recommended.