Objective: This study explores the influence of stimulation position on bone conduction (BC) hearing sensitivity with a BC transducer attached using a headband. Design: (1) The cochlear promontory motion was measured in cadaver heads using laser Doppler vibrometry while seven different positions around the pinna were stimulated using a bone anchored hearing aid transducer attached using a headband. (2) The BC hearing thresholds were measured in human subjects, with the bone vibrator Radioear B71 attached to the same seven stimulation positions. Study sample: Three cadaver heads and twenty participants. Results: Stimulation on a position superior-anterior to the pinna generated the largest promontory motion and the lowest BC thresholds. Stimulations on the positions superior to the pinna, the mastoid, and posterior-inferior to the pinna showed similar magnitudes of promontory motion and similar levels of BC thresholds. Conclusion: Stimulations on the regions superior to the pinna, the mastoid, and posterior-inferior to the pinna provide stable BC transmission, and are insensitive to small changes of the stimulation position. Therefore it is reliable to use the mastoid to determine BC thresholds in clinical audiometry. However, stimulation on a position superior-anterior to the pinna provides more efficient BC transmission than stimulation on the mastoid.